

ABSTRACT

We present results of the University of Iowa topic tracking
and detection as well as story segmentation efforts. Topic
tracking is performed for the “boundaries given” case. The
DET curves for all the runs are consistently smooth and con-
cave suggesting no sudden changes in expectation required
from the user. The effect of reducing the training size of rele-
vant stories is examined. The detection runs are performed
using a “pipeline” model to utilize the advantage of the
deferral period. Performance is strongly influenced by the
fact that roughly 2000 to 3000 declared topic clusters are
generated during the detection runs. Performance is analyzed
with respect to changing the cluster threshold. In segmenta-
tion, an agglomerative clustering strategy is adopted. The
decision to declare a boundary depends upon both lexical
similarity of neighboring segments as well as the pause dura-
tion. The algorithmic complexity of the method is O(k log k)
where k is the number of pause delimited sentences in the
file. The tracking, detection and segmentation modules pro-
vide a sound framework for future extension and experimen-
tation.

1. INTRODUCTION

The Information Retrieval Group at the University of Iowa
participated in all three tracks of the Topic Detection and
Tracking effort. Our system architecture is an extension and
enhancement of that which we have built for TREC [2],
implemented in Java and supporting a variety of task-specific
configurations through observer/observable design patterns
[3]. This year’s submission will function as a baseline for our
subsequent work in topic detection and tracking - we have
kept architectural and algorithmic details as clean as possible
to allow for evaluation of individual enhancements.

2. TRACKING

The tracking system begins by generating two sets of clus-
ters from the training data: one set from the on-topic training

stories and the other from the off-topic training stories. A
membership similarity threshold (

α

) controls cluster forma-
tion and extension. In order to cut down on the time and
space for computations, we introduced a second threshold
(

β

). An off-topic training story must be within

β

 similarity of
at least one positive cluster in order to be clustered during
this training phase. Any off-topic stories failing this criteria
are discarded as insufficiently similar.

Similarity between documents and clusters is measured
using a straight-forward vector cosine measure:

where TF(W

i

) is the (current) TF

×

IDF weight for term W

i

 in
a given document or cluster. Term frequencies are built up
incrementally as a given run progresses and cluster term
weights are adjusted every ten input files. This approach is
therefore somewhat inaccurate in the initial phases of a run,
but quickly reaches a point of reasonable stability with
respect to term frequencies and has the added benefit of
requiring no fore-knowledge of the vocabulary. Weights are
incrementally updated every 10 input files. All vocabulary is
stemmed using Porter’s algorithm [4] and filtered through a
stoplist. We prune document term vectors to the 100 most
weighty terms and cluster vectors to the 200 most weighty
terms. This proves to have no significant effect on the accu-
racy of our results, but a significant effect on both memory
requirements and execution time, the latter due to a corre-
sponding reduction in the cost of dot product calculations.

During testing, a new story must first qualify for consider-
ation by having a maximal on-topic similarity that exceeds
its maximal off-topic similarity. Any story failing this criteria
is declared a non-match for the topic with a confidence equal
to its maximal on-topic similarity. If the maximal match is
on-topic a second level criteria is applied. If the maximal on-
topic similarity is above

α

, the story is declared relevant, at
or below

α

, the story is declared non-relevant, in each case

sim d c,()

Wid Wic⋅
i 1=

max Nd N,
c

()

∑

Wid
2

i 1=

Nd

∑ Wjc
2

j 1=

Nc

∑⋅

---=

A Cluster-Based Approach to Tracking, Detection and Segmentation of
Broadcast News

David Eichmann

1

, Miguel Ruiz

1

, Padmini Srinivasan

1

,

Nick Street

2

, Chris Culy

3

, Filippo Menczer

2

1

School of Library and Information Science /

2

Dept. of Management Science /

3

Dept. of Linguistics
University of Iowa

Iowa City, IA 52242

with a confidence equal to its maximal similarity. The clus-
ters generated with the training data remain unchanged
throughout the test phase.

2.1. Analysis of Results

Our initial shakedown runs involved only

α

 thresholds in
effect at a very low setting (0.1). We then post-processed the
result files to toggle yes/no decisions at a variety of

α

 values,
with optimal results in the range 0.20 - 0.25. We then tested
the following parameter combinations using the development
data:

1.

α

 = 0.25 and

β

 = 0.20;

2.

α

 = 0.20 and

β

 = 0.15.

Unfortunately, due to human error the results became inter-
changed and we selected the second set of parameters instead

of the first. An additional programming error was introduced
during the asr runs that overrode

α

 in a key declaration to
0.1. Our official results were therefore less than stellar…
Table 1 shows both the official results and the results
obtained with the declaration error removed. Figure 1 show
the original and corrected DET curves for ASR, Nt = 4.

We have subsequently completed a full set of tracking runs
for the ‘boundaries given’ case, with results shown in Table
2. Tthe corrected results lead us to believe that even simple
algorithmic approaches can perform well when customized
for the specific task. The DET curves for all the runs are con-
sistently smooth and concave suggesting no sudden changes
in expectation required from the user.

As expected, reducing the amount of relevant information
used, from 4, to 2 to 1 relevant document worsens the C

track

.
However comparison of the DET curves is interesting. For
all three types of sources the highest P(Miss) value on the
curve drops while the lowest P(Fa) value rises as fewer rele-

Table 1: OfÞcial Tracking Results,

α

 = 0.25,

β

 = 0.20

Story Weighted Topic Weighted

P(Miss) P(Fa) C

track

P(miss) P(Fa) C

track

Official asr, Nt=4 .0821 .0493 .0500 .1460 .0425 .0446

Official man_ccap, Nt=4 .2335 .0018 .0064 .2531 .0018 .0068

Corrected asr, Nt=4 .2476 .0020 .0069 .2639 .0020 .0072

1

2

5

10

20

40

60

80

90

.01.02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

False Alarms probability (in %)

Random Performance
Official Pooled Curve Nt=4

Official Minimum Ctrack
Official Story Wei. Hard Dec. Ctrack

Revised Pooled Curve Nt=4
Revised Minimum Ctrack

Revised Story Wei. Hard Dec. Ctrack

Figure 1: ASR Tracking Results, Nt = 4, α = .25, β = .20

Table 2: Tracking Results

Source & # Training
Examples

Run
Story Weighted Topic Weighted

P(Miss) P(Fa) C

track

P(Miss) P(Fa) C

track

ASR 4

α

 = .25,

β

 = .20 .2476 .0020 .0069 .2639 .0020 .0072

α

 =.20,

β

 = .15 .1758 .0040 .0075 .1765 .0037 .0071

ASR 2

α

 = .25,

β

 = .20 .3040 .0014 .0074 .3814 .0013 .0089

α

 =.20,

β

 = .15 .2154 .0031 .0073 .2441 .0027 .0076

ASR 1

α

 = .25,

β

 = .20 .4176 .0010 .0093 .4618 .0009 .0101

α

 =.20,

β

 = .15 .2586 .0021 .0072 .3967 .0020 .0099

CCAP 4

α

 = .25,

β

 = .20 .2474 .0018 .0067 .2637 .0018 .0070

α

 =.20,

β

 = .15 .1618 .0034 .0065 .1844 .0031 .0067

CCAP 2

α

 = .25,

β

 = .20 .3133 .0013 .0075 .3542 .0012 .0083

α

 =.20,

β

 = .15 .1669 .0029 .0061 .2288 .0025 .0070

CCAP 1

α

 = .25,

β

 = .20 .3785 .0009 .0084 .4319 .0008 .0094

α

 =.20,

β

 = .15 .2225 .0018 .0062 .3222 .0018 .0082

FDCH 4

α

 = .25,

β

 = .20 .2248 .0018 .0063 .2483 .0018 .0067

α

 =.20,

β

 = .15 .1606 .0034 .0065 .1859 .0031 .0068

FDCH 2

α

 = .25,

β

 = .20 .3036 .0014 .0074 .3449 .0013 .0082

α

 =.20,

β

 = .15 .1672 .0029 .0062 .2316 .0025 .0070

FDCH 1

α

 = .25,

β

 = .20 .3759 .0009 .0084 .4296 .0008 .0094

α

 =.20,

β

 = .15 .2226 .0018 .0063 .3231 .0018 .0082

Table 3: Pipeline Effects on Detection Performance

03/98 ASR Story Weighted Topic Weighted

Deferral

α

P(Miss) P(Fa) C

det

P(Miss) P(Fa) C

det

10 .15 .9502 .0013 .0203 .3664 .0013 .0086

1 w/ retro .15 .9546 .0012 .0203 .4268 .0012 .0097

1 w/o retro .15 .9585 .0018 .0209 .5624 .0018 .0130

Table 4: Detection Development Results

asr Story Weighted Topic Weighted

Deferral

α

P(Miss) P(Fa) C

det

P(Miss) P(Fa) C

det

1 .10 .9742 .0017 .0212 .5255 .0017 .0123

.15 .9612 .0009 .0201 .4181 .0008 .0092

.20 .9678 .0005 .0198 .4974 .0005 .0104

.25 .9770 .0004 .0199 .6450 .0004 .0133

10 .10 .9735 .0018 .0212 .4706 .0018 .0112

.15 .9632 .0007 .0200 .3944 .0007 .0086

.20 .9637 .0005 .0198 .4954 .0005 .0104

.25 .9730 .0003 .0197 .5987 .0003 .0122

100 .10 .9740 .0018 .0212 .4478 .0017 .0106

.15 .9590 .0007 .0199 .3528 .0007 .0078

.20 .9681 .0003 .0197 .4065 .0003 .0084

.25 .9733 .0002 .0197 .4751 .0002 .0097

vant documents are used. For example, Figure 2 shows
FDCH runs with 4, 2 and 1 training examples,

α

 = .25 and

β

= .20. The highest P(Miss) score on the curve drops from 0.8
to 0.65, while the lowest P(Fa) score rises from 0.08 to 0.15
as one moves from 4 relevant documents to 1.

2.2. Future Directions

There are a number of ways in which we could improve upon
these results. For instance we could refine the initial criteria
by considering the magnitude of the difference between the
new story's similarity with the closest relevant cluster and the
closest non-relevant cluster. This is likely to reduce our false
alarm rate. Other refinements that modify the training clus-
ters with “high confidence” topic stories are also possible.
These are likely to impact both the misses and false alarms.

3. DETECTION

This task takes the same general approach as that done for
tracking. The stories in each input file are clustered using a
specified membership threshold (

α

). We then ‘pipeline’ these
cluster sets for the specified deferral period and then base
decisions first on whether a given cluster is sufficiently close
to a previously declared topic cluster based upon an inter-
cluster threshold (currently also

α

). If it is we merge the new
cluster with the declared topic cluster. Otherwise we look

forward in the pipeline to see if any future cluster is suffi-
ciently close (same threshold

α

) as to warrant declaring the
current cluster as a new topic cluster. Clusters failing both
tests and containing a single story were discarded as noise
for our official runs. Non-singleton clusters are declared as a
new topic.

A deferral period of 1 is handled as a special case by retain-
ing the 10 most recent file cluster sets for use in the second
stage decision making process. This leads to a lag in the
identification of new topics, but avoids the discarding of sto-
ries with a low appearance frequency. Story vectors and
hence cluster vectors are generated after excluding stop-
words and stemming the rest. Terms weights are computed
using TF

×

IDF scores after normalizing for length of story.
Term weights are incrementally updated every ten files.

3.1. Developmental Runs

Our initial approach to detection did not include the pipeline
concept, focussing instead on tuning

α

 over a range of 0.10 -
0.25 in increments of 0.05 for the specified deferral periods.
As shown in Table 3 for one month of ASR data, providing a
retrospective pipeline for a deferral period of 1 has signifi-
cant effect upon performance.

Table 4 shows the scoring for our development runs. In all
asr cases,

α

 = 0.15 generates the minimal C

det

 value, which
we subsequently used for our official runs, shown in Table 5.

1

2

5

10

20

40

60

80

90

.01.02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

False Alarms probability (in %)

Random Performance
Pooled Curve Nt=4

Nt=4 Minimum Ctrack
Nt=4 Story Wei. Hard Dec. Ctrack

Pooled Curve Nt=2
Nt=2 Minimum Ctrack

Nt=2 Story Wei. Hard Dec. Ctrack
Pooled Curve Nt=1

Nt=1 Minimum Ctrack
Nt=1 Story Wei. Hard Dec. Ctrack

Figure 2: FDCH Tracking Results, α = .25, β = .20

3.2. Analysis of results

Comparing cluster score clouds across runs, we have found
that raising the threshold does improve our false alarm rate
proportionately. Unfortunately, we are not seeing a corre-
sponding improvement in P(Miss). Rather than the entire
cloud shifting down, we are finding that the cloud is instead
elongating, with some topics improving well and others
hardly at all. Figure 3 illustrates this effect for α = 0.15. We
suspect that this is due in a great extent to the fact that we are
generating roughly 2000 - 3000 declared topic clusters dur-
ing a given run, and that the documents relevant to a given
topic are splitting across two or more clusters. The evalua-
tion scheme then chooses only one of these for scoring. We
are currently examining intercluster similarities to see if

some form of cluster fusion could reduce the number of
declared clusters.

4. SEGMENTATION

Text segmentation was performed with an agglomerative
clustering approach. Clusters were built iteratively from the
word level up, combining neighboring clusters as long as
sufficiently similar neighboring clusters appeared in the
deferral window. The result is a very fast and flexible algo-
rithm that will be extended in several natural ways to
increase its accuracy. We note that in this section, the word
“cluster” refers to a logical construct consisting of a block of
consecutive words and pauses.

Table 5: OfÞcial Detection Runs

Story Weighted Topic Weighted

Source Deferral P(Miss) P(Fa) Cdet P(Miss) P(Fa) Cdet

nwt+asr 1 .4957 .0012 .0111 .4207 .0012 .0096

10 .6051 .0009 .0130 .4323 .0009 .0095

100 .5540 .0013 .0123 .3593 .0013 .0084

nwt+man_ccap 1 .5621 .0009 .0121 .4421 .0009 .0097

10 .4138 .0010 .0093 .3776 .0010 .0085

1

2

5

10

20

40

60

80

90

.01.02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

False Alarms probability (in %)

Random Performance
IowaDetector_1.0 cluster score cloud

IowaDetector_1.0 topic weighted score

Figure 3: ASR Detection Development Results, deferral = 10, α = .15

The algorithm begins as follows. Source text is read until the
deferral window is filled. Initially each sentence (note: for
ASR text, “sentence” refers to a group of words between
pauses) is considered to be a cluster. A similarity score
(described below) is then computed for all pairs of neighbor-
ing clusters. If the most similar pair of neighbors meets a
minimum similarity threshold, the two clusters are combined
to form a new cluster, which is then compared to its neigh-
bors. The process repeats until no pair of neighbors meets the
similarity threshold, or until all the sentences in the window
have been combined into one cluster.

A general step of the algorithm proceeds similarly. The left
end of the deferral window is placed at the first inter-cluster
gap; this is the earliest potential segment gap. The window is
again filled with new words, and the clustering algorithm is
performed until no further combinations are possible. If the
leftmost cluster in the deferral window was combined with
the cluster on its left, that means that the potential gap was in
fact just part of a larger segment. If not, then the potential
gap was in fact a segment break, and the new segment is
declared. This step is then repeated until the end of the file is
reached.

We use a max-heap [1, 5] to access the cluster similarity
scores. This means that the most similar cluster pair can
always be found in logarithmic time. The algorithmic com-
plexity of the clustering method is therefore O(k log k),
where k is the number of sentences in the file. In practice we

found that the clustering runs could be performed in under an
hour on a top-end Linux PC.

A simple combination criterion of similarity was used for the
TDT2 runs, depending on the duration of the inter-cluster
pause and a lexical similarity score. If the pause duration was
smaller than a given time threshold (0.5 seconds in the test
runs) the similarity score was set to the maximum, insuring
that the clusters would be combined. If the duration was
greater than a second threshold (4 seconds), the score was set
to the minimum, ensuring that a gap would be declared.
These two rules were applied irrespective of lexical similar-
ity. Otherwise, the pause duration was considered to be of no
value, and similarity was computed as a dot product of
TF×IDF weighted cluster representation vectors. Stemming
and stop words were not employed. Thus, only three opera-
tional parameters controlled the performance of the system.
Figure 4 shows the combined results for all window sizes.
Our false alarm rate is reasonable compared to other sys-
tems, but we have a rather high miss rate.

With the framework in place, we now turn our attention to
fine-tuning the algorithm with some natural extensions, of
which we mention three. First, the values of the three opera-
tional parameters will be optimized. We are currently imple-
menting a stepwise gradient descent method for learning the
optimal values within the current combination objective.
Second, the criterion will be extended to incorporate more
information, such as the number of words in a cluster and the
presence of stop words. Finally, the algorithm itself can be

1

2

5

10

20

40

60

80

90

.01.02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

False Alarms probability (in %)

Random Performance
Window=100 source score cloud

Window=100 story weighted score
Window=1K source score cloud

Window=1K story weighted score
Window=10K source score cloud

Window=10K story weighted score

Figure 4: Segmentation Results

made more general by examining more than neighboring
pairs of clusters. For instance, it is possible that a cluster
could match its neighbor poorly, but match its neighbor's
neighbor very well, indicating that all 3 clusters belong to the
same story. We will experiment with varying the width of
this search.

REFERENCES

1. Crane, C.A., “Linear lists and priority queues as balanced
binary trees,” Tech. Rep. STAN-CS-72-259, Stanford Uni-
versity, Stanford, CA, 1972.

2. Eichmann, D., M. E. Ruiz and P. Srinivasan, “Cluster-Based
Filtering for Adaptive and Batch Tasks,” Seventh Conference
on Text Retrieval, NIST, Washington, D.C., November 11 -
13, 1998.

3. Gamma, E., R. Helm, R. Johnson, J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Add-
ison Wesley, 1995.

4. Porter, M. F., “An Algorithm for Suffix Stripping,” Program,
v. 14, no. 3, 1980, p. 130-137.

5. Weiss, M.A., Data Structures and Algorithm Analysis (Sec-
ond Edition), Addison-Wesley, 1997.

